Note
Go to the end to download the full example code
NCL_panel_4.py#
- Note: The colormap has been changed from the original NCL colormap in order to follow
best practices for colormaps. See more examples here: https://geocat-examples.readthedocs.io/en/latest/gallery/index.html#colors
- This script illustrates the following concepts:
Paneling three plots vertically on a page
Adding a common title to paneled plots
Adding a common colorbar to paneled plots
Adding additional text at the bottom of a series of paneled plots
Subsetting a color map
- See following URLs to see the reproduced NCL plot & script:
Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/panel_4.ncl
Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/panel_4_lg.png
Import Packages
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LongitudeFormatter, LatitudeFormatter
import matplotlib.pyplot as plt
import matplotlib as mpl
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import numpy as np
import xarray as xr
import geocat.datafiles as gdf
import geocat.viz as gv
Read in data:
# Open a netCDF data file using xarray default engine and save as a variable
ds = xr.open_dataset(gdf.get("netcdf_files/uv300.nc"))
# save the zonal and meridional wind separately, select July data
zonal = ds.U.isel(time=1)
meridional = ds.V.isel(time=1)
Define plotting helper function
# Define a utility plotting function in order not to repeat many lines of code
# since we need to make the same figure with two different variables.
def plot_labelled_filled_contours(data, ax=None):
"""A utility function for plotting labelled, filled contours with black
contour outlines marking each level.
Parameters
----------
data : :class:`xarray.DataArray`:
A two-dimensional array with longitude and latitude as dimensions.
ax : :class:`cartopy.mpl.geoaxes.GeoAxesSubplot`:
An axes object from Matplotlib package with projection from Cartopy package.
Returns
-------
handles : :class:`dict`:
A dictionary containing three objects corresponding to the filled contours, the black
contour outlines, and the contour labels.
Description
-----------
Produce labeled and filled contour on the world map with tickmarks and
tick labels.
"""
handles = dict()
handles["filled"] = data.plot.contourf(
ax=ax, # this is the axes we want to plot to
cmap='viridis', # our colormap
levels=levels, # contour levels specified outside this function
transform=projection, # data projection
add_colorbar=False, # don't add individual colorbars for each plot call
add_labels=False, # turn off xarray's automatic Lat, lon labels
)
# matplotlib's "contourf" doesn't let you specify "edgecolors",
# instead we use matplotlib's "contour" to plot contour lines on top of the filled contours
handles["contour"] = data.plot.contour(
ax=ax,
levels=levels,
colors="black", # note plurals in this and following kwargs
linestyles="-",
linewidths=0.5,
add_labels=False, # again turn off automatic labels
)
# Label the contours
ax.clabel(
handles["contour"],
levels=np.arange(-10, 50, 10),
fontsize=8,
fmt="%.0f", # Turn off decimal points
)
# Add coastlines and make them semitransparent for plot legibility
ax.coastlines(linewidth=0.5, alpha=0.75)
# Use geocat.viz.util convenience function to set axes tick values
gv.set_axes_limits_and_ticks(ax,
xticks=np.arange(-180, 181, 30),
yticks=np.arange(-90, 91, 30))
# Use geocat.viz.util convenience function to add minor and major tick lines
gv.add_major_minor_ticks(ax, labelsize=8)
# Use geocat.viz.util convenience function to make plots look like NCL plots by using latitude, longitude tick labels
gv.add_lat_lon_ticklabels(ax)
# Remove degree symbol from tick labels
ax.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))
ax.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol=''))
# Use geocat.viz.util convenience function to add main title as well as titles to left and right of the plot axes.
gv.set_titles_and_labels(ax,
lefttitle=data.attrs['long_name'],
lefttitlefontsize=10,
righttitle=data.attrs['units'],
righttitlefontsize=10)
return handles
Plot
# Make three panels (i.e. subplots in matplotlib) specifying white space
# between them using gridspec_kw and hspace
# Generate figure and axes using Cartopy projection
projection = ccrs.PlateCarree()
fig, ax = plt.subplots(3,
1,
figsize=(6, 10),
gridspec_kw=dict(hspace=0.3),
subplot_kw={"projection": projection})
# Define the contour levels
levels = np.linspace(-10, 50, 13)
# Contour-plot U data, save "handles" to add a colorbar later
handles = plot_labelled_filled_contours(zonal, ax=ax[0])
# Set a common title
plt.suptitle("A common title", fontsize=16, y=0.94)
# Contour-plot V data
plot_labelled_filled_contours(meridional, ax=ax[1])
# Contour-plot U data again but in the bottom axes
plot_labelled_filled_contours(zonal, ax=ax[2])
# Create inset axes for colorbar
cax = inset_axes(ax[2],
width='100%',
height='10%',
loc='lower left',
bbox_to_anchor=(0, -0.25, 1, 1),
bbox_transform=ax[2].transAxes,
borderpad=0)
# Add horizontal colorbar
cbar = plt.colorbar(handles["filled"],
cax=cax,
orientation="horizontal",
ticks=levels[:-1],
drawedges=True,
aspect=30,
extendrect=True,
extendfrac='auto',
shrink=1)
cbar.ax.tick_params(labelsize=10)
# Add figure label underneath subplots
fig.text(0.5,
0.015,
"Figure 1: A nifty panel plot",
horizontalalignment='center',
fontsize=14)
# Show the plot
plt.show()

Total running time of the script: ( 0 minutes 0.883 seconds)