Note
Go to the end to download the full example code
NCL_lb_1.py#
- This script illustrates the following concepts:
Making a horizontal colorbar
Changing the colorbar labels
Setting color maps using the new standard
- See following URLs to see the reproduced NCL plot & script:
Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/lb_1.ncl
Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/lb_1_lg.png
Import packages
import numpy as np
import xarray as xr
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import cmaps
import geocat.datafiles as gdf
import geocat.viz as gv
Read in data:
# Open a netCDF data file using xarray default engine and load the data into xarrays
ds = xr.open_dataset(gdf.get("netcdf_files/atmos.nc"), decode_times=False)
# Extract variable
v = ds.V.isel(time=0, lev=3)
# Fix the artifact of not-shown-data around 0 and 360-degree longitudes
wrap_v = gv.xr_add_cyclic_longitudes(v, "lon")
Plot:
# Generate figure (set its size (width, height) in inches)
fig = plt.figure(figsize=(10, 10))
# Generate axes using Cartopy and draw coastlines
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines(linewidths=0.5)
# Import an NCL colormap
newcmp = cmaps.wgne15
# Contourf-plot data (for filled contours)
a = wrap_v.plot.contourf(levels=np.arange(-24, 32, 4),
cmap=newcmp,
add_colorbar=False,
add_labels=False)
# Contour-plot data (for borderlines)
wrap_v.plot.contour(levels=np.arange(-24, 32, 4),
linewidths=0.5,
cmap='black',
add_labels=False)
# Add vertical colorbar
cbar = fig.colorbar(a,
label='',
ticks=np.arange(-20, 28, 4),
shrink=0.8,
orientation="horizontal",
extendrect=True,
pad=0.11,
drawedges=True)
# Use geocat.viz.util convenience function to set axes limits & tick values without calling several matplotlib functions
gv.set_axes_limits_and_ticks(ax,
ylim=(-90, 90),
xticks=np.linspace(-180, 180, 13),
yticks=np.linspace(-90, 90, 7))
# Use geocat.viz.util convenience function to add minor and major tick lines
gv.add_major_minor_ticks(ax, labelsize=10)
# Use geocat.viz.util convenience function to make plots look like NCL plots by using latitude, longitude tick labels
gv.add_lat_lon_ticklabels(ax)
# Use geocat.viz.util convenience function to add titles to left and right of the plot axis.
gv.set_titles_and_labels(ax,
lefttitle="meridional wind component",
lefttitlefontsize=14,
righttitle="m/s",
righttitlefontsize=14,
xlabel="",
ylabel="")
# Show the plot
plt.show()

Total running time of the script: ( 0 minutes 0.564 seconds)