moc_globe_atl_example.py

This script illustrates the following concepts:
  • Usage of geocat-comp’s moc_globe_atl function

  • Computing POP MOC field offline from POP netcdf history files (designed for the CESM4 ocean component)

  • Usage of geocat-datafiles for accessing NetCDF files

  • Usage of geocat-viz plotting convenience functions

See following GitHub repositories to see further information about the function and to access data:
Dependencies:
  • geocat.comp

  • geocat.datafiles (Not necessary but for conveniently accessing the NetCDF data file)

  • numpy

  • xarray

Import packages:

import numpy as np
import xarray as xr

import geocat.datafiles as gdf
from geocat.comp import moc_globe_atl

Read in data:

# Open a netCDF data file using xarray default engine and load the data
# into xarrays
ds = xr.open_dataset(gdf.get('netcdf_files/tavg_downsized.nc'))

lat_aux_grid = ds.lat_aux_grid[:].values.astype(np.double)
w_e = ds.WVEL[:].values.astype(np.double)
w_i = ds.WISOP[:].values.astype(np.double)
w_sm = ds.WSUBM[:].values.astype(np.double)
tarea = ds.TAREA[:]
rmask = ds.REGION_MASK[:]
kmt = ds.KMT[:]
tlat = ds.TLAT[:].values.astype(np.double)

# Read important parameters from input data
nyaux = lat_aux_grid.shape[0]  # 395
km = np.max(kmt.values).astype(np.int)
ny = tarea.shape[0]
nx = tarea.shape[1]

Generate the data needed for function call:

# Generate rmlak: region_mask_lat_aux
rmlak = np.tile(rmask, (2, 1, 1)).astype(np.int32)
rmlak[0, :, :] = np.where(rmask > 0, 1, 0)
rmlak[1, :, :] = np.where(np.logical_and(rmask >= 6, rmask <= 11), 1, 0)
# todo Convert rmlak to xArray

# Generate a_wvel, a_bolus, and a_submeso
k3d = np.repeat(np.repeat(np.arange(0, km, 1).reshape(km, 1), ny,
                          axis=1)[:, :, np.newaxis],
                nx,
                axis=2)
kmt3d = np.repeat(kmt.values[np.newaxis, :, :], km, axis=0)
tarea3d = np.repeat(tarea.values[np.newaxis, :, :], km, axis=0)
ocean = k3d <= kmt3d

a_wvel = np.where(ocean, w_e[0, :, :, :] * tarea3d, 0.0)
a_bolus = np.where(ocean, w_i[0, :, :, :] * tarea3d, 0.0)
a_submeso = np.where(ocean, w_sm[0, :, :, :] * tarea3d, 0.0)

GeoCAT-comp function call:

# Invoke `moc_globe_atl` from `geocat-comp`
result = moc_globe_atl(lat_aux_grid,
                       a_wvel,
                       a_bolus,
                       a_submeso,
                       tlat,
                       rmlak,
                       msg=None,
                       meta=False)

print("moc_globe_atl successfully generated output.")

Out:

moc_globe_atl successfully generated output.

Total running time of the script: ( 0 minutes 3.081 seconds)

Gallery generated by Sphinx-Gallery